ВЫКЛЮЧАТЕЛЬ ВАКУУМНЫЙ типа ВБМ-10-20

Руководство по эксплуатации выключателя с электромагнитным приводом КУЮЖ.674152.012 РЭ

СОДЕРЖАНИЕ

1 Описание и работа	3
1.1 Описание и работа выключателя	3
1.1.1 Назначение выключателя	3
1.1.2 Технические характеристики	4
1.1.3 Состав и устройство выключателя	5
1.1.4 Работа выключателя	5
1.1.4.1 Включение выключателя	5
1.1.4.2 Отключение выключателя	6
1.1.5 Схема электрическая принципиальная	6
1.1.6 Меры безопасности	8
1.1.7 Маркировка и пломбирование	9
1.1.8 Упаковка	9
1.2 Описание и работа составных частей выключателя	10
1.2.1 Блок дугогасительный	10
1.2.2 Электромагнит включения	10
1.2.3 Блок защелок	10
1.2.4 Демпфер	10
1.2.5 Расцепители отключения	11
1.2.6 Механизмы блокировок	11
1.2.7 Переключатель	12
2 Использование выключателя по назначению	12
2.1 Эксплуатационные ограничения	12
2.2 Подготовка выключателя к использованию	12
2.3 Использование выключателя	13
2.4 Возможные неисправности и способы их устранения	14
3 Техническое обслуживание и измерение параметров	14
3.1 Техническое обслуживание	14
3.2 Измерение параметров	15
4 Хранение, транспортирование и утилизация	16
Приложение А Перечень приборов и материалов, необходимых для технического обслуживания выключателя	17
Приложение Б Рекомендации по оценке коммутационного ресурса контактов камер при операциях О для различных значений тока к.з.	18
Приложение В Выключатель с электромагнитным приводом	19
Приложение Г Расположение органов управления и индикации	21
Приложение Д Типы исполнений выключателей	22
Приложение Ж Кинематическая схема выключателя	23
Приложение И Технология замены конденсаторов	24

Руководство по эксплуатации выключателя (далее – РЭ) предназначено для изучения технических характеристик, устройства, работы выключателей вакуумных типа BБМ-10-20 с электромагнитным приводом и содержит необходимый объем сведений и иллюстраций, достаточный для правильной эксплуатации (использования, технического обслуживания, транспортирования и хранения) этих выключателей.

Эксплуатация выключателей должна производиться только после ознакомления со всеми разделами данного РЭ.

При изучении устройства выключателей и при их эксплуатации следует дополнительно руководствоваться следующими документами:

- КУЮЖ.674152.012 ФО Формуляр на выключатель вакуумный;
- КУЮЖ.674152.012 ЭЗ КУЮЖ.674152.012–10 ЭЗ Схема электрическая принципиальная в соответствии исполнением выключателя.

Предприятие—изготовитель постоянно проводит работы по совершенствованию конструкции и технологии изготовления выключателя, поэтому в схему и конструкцию выключателя могут быть внесены непринципиальные изменения , не отраженные в настоящем РЭ.

Обслуживающий оперативно-ремонтный персонал, осуществляющий эксплуатацию выключателей, должен быть подготовлен к работе с выключателями и устройствами, в которых они применяются, в объеме должностных и производственных инструкций и иметь соответствующую квалификационную группу по технике безопасности.

РЭ распространяется на все исполнения выключателя типа ВБМ-10-20.

Примечание — На выключатели ВБП–10–20 с пружинно–электромагнитным приводом действует руководство по эксплуатации КУЮЖ.674152.012–01 РЭ.

- 1. Описание и работа
- 1.1 Описание и работа выключателя
- 1.1.1 Назначение выключателя

1.1.1.1 Выключатель предназначен для частых коммутационных операций в сетях трехфазного переменного тока частотой 50 Γ ц с номинальным напряжением 10 кВ при номинальном токе 630 A, 1000 A, 1250 A или 1600 A, в зависимости от заказа, при номинальном токе отключения 20 кА.

Выключатель предназначен для работы в сетях с изолированной или компенсированной нейтралью.

Выключатель предназначен для использования в шкафах управления приемников электрической энергии промышленных предприятий, в комплектных распределительных устройствах высокого напряжения (КРУ), устанавливаемых как в закрытых помещениях, так и на открытом воздухе (КРУН). В последнем случае конструкция КРУН должна предусматривать защиту электрических аппаратов и всех электрических соединений от воздействия окружающей среды (дождя, снега, тумана, пыли, ветра).

Рабочее положение выключателя – вертикальное, дугогасительными камерами вверх.

Выключатель предназначен для выполнения следующих операций:

- дистанционное оперативное включение и отключение напряжения с параметрами, указанными в п.1.1.2.1;
 - ручное неоперативное включение;
 - ручное оперативное и неоперативное отключение;
 - автоматическое повторное включение;
- отключение и включение при сквозных токах короткого замыкания с параметрами, указанными в п.1.1.2.5.
- 1.1.1.2 Для защиты от перенапряжений при коммутациях выключателем присоединений с электродвигателями и трансформаторами следует руководствоваться "Методическими

указаниями по применению ограничителей перенапряжений нелинейных в электрических сетях 6-35 кВ", утвержденными Департаментом научно-технической политики и развития РАО "ЕЭС России" 27.04.01г.

- 1.1.1.3 Выключатель сохраняет свои параметры в пределах норм и требований, установленных ТУ, в процессе и после воздействия следующих внешних факторов:
 - синусоидальная вибрация в диапазоне частот 05–100 Гц с ускорением до 0,5 g;
 - верхнее значение температуры воздуха при эксплуатации +50 °C;
 - нижнее значение температуры воздуха при эксплуатации минус 45°C;
 - относительная влажность воздуха при температуре +25 °C 100% с конденсацией влаги;
 - атмосферные конденсированные осадки в условиях выпадения росы;
 - верхнее значение температуры воздуха при транспортировании и хранении +50 °C;
- нижнее значение температуры воздуха при транспортировании и хранении минус 50 $^{\rm o}{\rm C}.$

1.1.2 Технические характеристики

- 1.1.2.1 Основные параметры выключателя:
- а) номинальное напряжение 10 кВ;
- б) наибольшее рабочее напряжение 12 кВ;
- в) номинальный ток 630 A, 1000 A, 1250 A или 1600 A в зависимости от заказа;
- г) номинальный ток отключения 20 кА;
- д) межполюсное расстояние 150 мм, 200 мм или 230 мм в зависимости от заказа;
- е) номинальное напряжение цепей питания привода и управления в соответствии с таблицей Д.1 приложения Д.
- 1.1.2.2 Перечень параметров, проверяемых при изготовлении и поставке, их нормы и фактические значения приведены в формуляре (ФО) на выключатель.
- 1.1.2.3 Наибольшая допустимая температура нагрева элементов главных цепей выключателя при номинальном токе не превышает 115°C*.
- 1.1.2.4 Наибольшая допустимая температура нагрева обмоток электромагнитов при номинальном напряжении питания привода не превышает 105 °C*.
- 1.1.2.5 Выключатель обладает стойкостью к электродинамическому и термическому воздействию сквозных токов короткого замыкания с параметрами вплоть до следующих значений:
 - наибольший пик тока (ток электродинамической стойкости) 51 кА;
 - начальное действующее значение периодической составляющей 20 кА;
- среднеквадратичное значение тока за время его протекания (ток термической стойкости) 20 кА;
 - время протекания тока (время короткого замыкания) 3 с.
 - 1.1.2.6 Выключатель обладает коммутационной способностью при:
 - напряжении сети вплоть до наибольшего рабочего напряжения 12 кВ;
- действующем значении периодической составляющей тока отключения при коротких замыканиях, отнесенное к моменту прекращения соприкосновения контактов главных цепей, вплоть до равного 20 кА;
 - процентном содержании апериодической составляющей тока отключения при коротких замыканиях, отнесенное к моменту прекращения соприкосновения контактов, не более 30 %;
- восстанавливающемся напряжении в соответствии с нормированными характеристиками собственного переходного восстанавливающегося напряжения по ГОСТ 687–78 (раздел 3);
- начальном действующем значении периодической составляющей тока включения при коротких замыканиях не менее 20 кА;
 - наибольшем пике тока включения при коротком замыкании вплоть до 51 кА;
- нормированных коммутационных циклах 1, 1а при нормированной бестоковой паузе
 0,3 с.

- 1.1.2.7 Выключатель отключает критические токи, равные (0.02-0.03) и (0.04-0.06) значений номинального тока отключения.
- 1.1.2.8 Выключатель отключает токи намагничивания ненагруженных трансформаторов не более 5,5 А при коэффициенте мощности не менее 0,3 без дополнительной защиты от перенапряжений.
 - 1.1.2.9 Выключатель отключает емкостные токи до 50 А.
- 1.1.2.10 Условные обозначения исполнений выключателей, предусмотренных конструкторской документацией, указаны в приложении Д.

1.1.3 Состав и устройство выключателя

- 1.1.3.1 Выключатель разработан по модульному принципу, что позволяет сборку и настройку модулей вести автономно и легко производить замену в эксплуатации дугогасительных модулей после выработки коммутационного ресурса.
- 1.1.3.2 Выключатель представляет собой аппарат с приводом прямого действия. Операция включения осуществляется за счет тягового усилия электромагнита включения. Отключение выключателя (в том числе автоматическое отключение при токах короткого замыкания или перегрузках) осуществляется за счет энергии, запасенной при включении пружиной отключения и пружинами поджатия дугогасительных блоков.
- 1.1.3.3 Гашение дуги в выключателе осуществляется камерами дугогасительными вакуумными (КДВ). Электрическая дуга, благодаря специальной форме контактов КДВ, распадается и гасится при переходе тока через ноль. Благодаря высокой электрической прочности вакуумного промежутка напряжение между контактами восстанавливается в течении долей секунд.

Примечание — Далее по тексту позиционные обозначения без ссылки на рисунок относятся к рисунку B.1, рисунку $\Gamma.1$, у которых нумерация позиционных обозначений совпалает.

1.1.3.4 Выключатель состоит из трех дугогасительных блоков 6, корпуса 5, привода 9, установленных на основании 1. В корпусе 5 размещены переключатель 10 (SQ5–SQ7), панель управления 11, счетчик циклов 12, колодки соединения цепей питания и управления. На основании 1 размещены демпфер 7, пружина отключения 8, электромагнит включения 9, расцепители, вал привода 17, блок защелок и механизмы блокировок, панель конденсаторов 31 расцепители минимального напряжения (при его наличии).

Выключатели с межполюсным расстоянием 150 мм и 200 мм позволяют устанавливать до четырех расцепителей (электромагнит отключения 13, расцепитель с питанием от независимого источника 15 или расцепитель минимального напряжения 14, два расцепителя максимального тока 16).

Выключатели с межполюсным расстоянием 230 позволяют устанавливать до шести расцепителей (электромагнит отключения 13, расцепитель от независимого источника 15, расцепитель минимального напряжения 14, три расцепителя максимального тока 16).

1.1.4 Работа выключателя

1.1.4.1 Включение выключателя.

В исходном положении контакты вакуумной дугогасительной камеры удерживаются в отключенном положении отключающей пружиной 8.

Оперативное включение выключателя производится подачей напряжения на электромагнит включения 9. Шток электромагнита через рычаг поворачивает вал 17. Рычаги вала через тяговые изоляторы и узлы поджатия замыкают контакты КДВ, после чего рычаг 18 фиксируется защелкой.

Одновременно, при повороте вала 17, производится взвод отключающей пружины 8, переключение контактов переключателя 10, сигнализирующих о состоянии выключателя, перевод флажка 29 из положения ОТКЛ в положение ВКЛ.

В конце хода вал 17 поворачивает рычаги 32, 36 и переключает микропереключатели 33 и 35 блокировки включения и отключения, соответственно.

Ручное неоперативное включение выключателя осуществляется рычагом 3, который устанавливается на вал 17.

ВНИМАНИЕ! ПРИ РУЧНОМ НЕОПЕРАТИВНОМ ВКЛЮЧЕНИИ ВЫКЛЮЧАТЕЛЯ РЫЧАГОМ, ДОЛЖНЫ БЫТЬ ПРИНЯТЫ МЕРЫ, ПРЕПЯТСТВУЮЩИЕ ЕГО ОПРОКИДЫВАНИЮ. ПОСЛЕ ВКЛЮЧЕНИЯ ВЫКЛЮЧАТЕЛЯ РЫЧАГ 3 НЕОБХОДИМО СНЯТЬ С ВАЛА ВЫКЛЮЧАТЕЛЯ.

- 1.1.4.2 Отключение выключателя
- В исходном положении контакты КДВ замкнуты, выключатель удерживается во включенном положении защелкой.

При подаче напряжения на электромагнит отключения 13 или аварийного сигнала на один из расцепителей максимального тока 16, или на расцепитель от независимого источника 15, или при снятии напряжения с расцепителя минимального напряжения 14 штоки расцепителей поворачивают валик 20.

Валик 20 через тягу 22 освобождает защелку и происходит отключение выключателя. В конце хода рычаг 27 вала 17 тормозится демпфером 7.

Ручное отключение выключателя осуществляется кнопкой 21.

ВНИМАНИЕ! ОПЕРАТИВНОЕ ВКЛЮЧЕНИЕ ВЫКЛЮЧАТЕЛЯ ОСУЩЕСТВЛЯЕТСЯ ТОЛЬКО ДИСТАНЦИОННО, ОПЕРАТИВНОЕ И НЕОПЕРАТИВНОЕ ОТКЛЮЧЕНИЕ – ДИСТАНЦИОННО И ВРУЧНУЮ.

1.1.5 Схема электрическая принципиальная

- 1.1.5.1 Выключатель выпускается в различных исполнениях по величине номинального тока, роду тока и величине напряжения питания привода, набору устанавливаемых расцепителей. Для этих исполнений разработаны соответствующие электрические схемы КУЮЖ.674152.012; -03; -06; -10 Э3.
- 1.1.5.2 Электрические схемы обеспечивают выполнение выключателями следующих функций:
- включения и отключения выключателя при подаче соответствующих оперативных сигналов извне через контакты колодки XT1;
- отключения выключателя или расцепителями максимального тока (работающих от схемы с дешунтированием), или расцепителем минимального напряжения, или расцепителем с питанием от независимого источника (при их наличии) при подаче соответствующих аварийных сигналов;
- включения выключателя с питанием привода от источника переменного тока при операции включения на токи короткого замыкания при условии полного снятия напряжения питания привода за время не более 20 мс;
- защиты против повторения операций включения отключения выключателя, когда команда на включение остается поданной после автоматического отключения;
- защиты от повторного включения выключателя, укомплектованного расцепителем минимального напряжения и (или) расцепителями максимального тока, с питанием привода от источника переменного тока после его автоматического отключения при проведении операции включения на токи короткого замыкания;
- сигнализации о состоянии выключателя с помощью коммутирующего вспомогательного устройства для внешних целей контроля и управления.

Подача сигналов управления на выключатель и получение информации о состоянии выключателя осуществляется через соответствующие контакты колодок XT1 и XT4. Выпрямительный мост, выполненный на диодах VD1–VD4, предназначен для питания выпрямленным напряжением электромагнита включения YAC1 исполнений выключателя с питанием привода от источника переменного тока.

При подаче соответствующего напряжения питания на контакты 1, 2, 3, 5 колодки XT1 срабатывает реле K1 и своими контактами K.1.3 (или K1.3 и K1.4) подготавливает цепь

питания пускателя КМ1. При подаче команды включения на контакты 4, 5 колодки ХТ1 срабатывает пускатель КМ1 и своими контактами (КМ1.1, КМ1.2, КМ1.3 через диодный мост или КМ1.1 непосредственно, в зависимости от исполнения выключателя) подает напряжение питания на электромагнит включения YAC1. Сработав, электромагнит включения, посредством вала привода и тяг дугогасительных блоков, замыкает контакты QS1, QS2, QS3 КДВ главных цепей выключателя с установкой механизма включения на механическую зещелку. Одновременно срабатывают микропереключатели SQ1, SQ2 и блок-контакты SQ5—SQ7, связанные механически с валом привода. Микропереключатель SQ1 разрывает цепь питания реле К1, контакты которого К1.3 (или К1.3 и К1.4) разрывают цепь питания пускателя КМ1. Пускатель КМ1 своими контактами КМ1.1, КМ1.2, КМ1.3 (или КМ1.1) разрывает цепь питания электромагнита YAC1 и его якорь возвращается в исходное состояние.

Микропереключатель SQ2 подготавливает цепь питания электромагнита отключения YAT1. Блок-контакты SQ5-SQ7 через колодку XT4, коммутируют внешние цепи сигнализации и управления потребителя.

При подаче команды на отключение на контакты 6, 7 колодки XT1 срабатывает электромагнит отключения YAT1 через замкнутые контакты микропереключателя SQ2. Выключатель отключается, происходит отключение контактов QS1, QS2, QS3 главных цепей и возврат контактов микропереключателей SQ1 и SQ2, блок–контактов SQ5–SQ7 в исходное состояние. Выключатель готов к повторному включению.

Учет числа циклов включения осуществляется счетчиком импульсов PC1, подключенного параллельно пускателю КМ1.

- 1.1.5.3 Работа защиты против повторения операций включения-отключения, когда команда на включение остается поданной на контакт 4 колодки XT1 после автоматического отключения выключателя обеспечивается следующим образом:
- при подаче команды на включение срабатывает электромагнит включения YAC1 и связанный с ним через вал привода микропереключатель SQ1. Срабатывание микропереключателя SQ1 обеспечивает возврат реле К1 в исходное положение. Контакты реле К1.3 (или К1.3 и К1.4) разрывают цепь питания пускателя КМ1, а контакты К1.1 и К1.2 шунтируют обмотку реле;
- при подаче команды на отключение механизм включения возвращается в исходное состояние и через контакты микропереключателя SQ1 замыкается цепь срабатывания реле К1. Но повторного срабатывания электромагнита включения не происходит, так как обмотка реле К1 остается зашунтированной на все время действия команды на включение. Включение выключателя будет возможно после кратковременного снятия команды на включение с контакта 4 колодки XT1 и повторной подачи команды на включение.
- 1.1.5.4 Работа защиты от возможности включения выключателя в промежуточном положении в КРУ, а также для предотвращения вкатывания в шкаф КРУ и выкатывания из шкафа КРУ включенного выключателя, обеспечивается срабатываем механической блокировки и связанным с ней микропереключателем SQ3. Микропереключатель SQ3 разрывает цепь питания пускателя КМ1.
- 1.1.5.5 Для обеспечения функции включения выключателя с установкой на механическую защелку при операции включения на токи к. з. при условии полного снятия напряжения питания привода установлены пускатель КМ2, конденсатор С1, резисторы R1 и R2, диоды VД5 и VД6. После подачи команды на включение конденсатор С1 заряжается через резисторы R1, R2 и диод VД5. Резистором R2 регулируется ток заряда конденсатора.. После срабатывания пускателя КМ2 конденсатор С1 контактами КМ2.1, КМ2.2, КМ2.3 подключается к выводам электромагнита включения YAC1. Дополнительная энергия, запасенная конденсатором С1, обеспечивает срабатывание электромагнита включения и установку механизма включения на защелку после снятия напряжения с привода.

Диод VД6 служит для развязки цепей заряда и разряда конденсатора C1.

Поскольку выключатель включается на к. з., то происходит резкое снижение напряжения как в цепи электромагнита включения, так и в цепи команды на включение. Реле К1 возвращается в исходное состояние, замыкаются контакты К1.1 и К1.2. и размыкаются контакты К1.3 (или К1.3 и К1.4). После автоматического отключения выключателя

расцепителем минимального напряжения или расцепителем максимального тока напряжение восстанавливается, но повторного срабатывания реле К1 не происходит, так как обмотка реле К1 остается зашунтированной контактами К1.1 и К1.2 на все время команды на включение.

1.1.6 Меры безопасности.

- 1.1.6.1 К работе с выключателем допускаются лица, изучившие настоящее руководство по эксплуатации, прошедшие подготовку по использованию и обслуживанию электростанций и сетей в соответствии с "Правилами технической эксплуатации электрических станций и сетей Российской Федерации" РД 34.20.501–95, а также прошедшие инструктаж по безопасности труда.
- 1.1.6.2~ При работе в ячейке КРУ выключатель должен быть надежно заземлен с помощью провода или шины сечением не менее 4 мм 2 , присоединенных к болту 2 или через контактные площадки основания 1.
- 1.1.6.3 Техническое обслуживание выключателя должно проводиться только при полном отсоединении его от главной цепи.
- 1.1.6.4 При транспортировании неупакованного выключателя подъемными механизмами следует использовать отверстия, имеющиеся на боковых стенках корпуса 5 для зацепа крюками 1A–1 ГОСТ 6627–74.
- 1.1.6.5 При номинальном напряжении (линейном) 10 кВ и наибольшем рабочем напряжении (линейном) 12 кВ, выключатель не является источником рентгеновского излучения.

ВНИМАНИЕ! ПРИ ИСПЫТАНИИ ЭЛЕКТРИЧЕСКОЙ ПРОЧНОСТИ ИЗОЛЯЦИИ ГЛАВНОЙ ЦЕПИ ВЫКЛЮЧАТЕЛЯ КРАТКОВРЕМЕННЫМ ИСПЫТАТЕЛЬНЫМ НАПРЯЖЕНИЕМ 38–42 кВ ПРОМЫШЛЕННОЙ ЧАСТОТЫ ВЫКЛЮЧАТЕЛЬ СТАНОВИТСЯ ИСТОЧНИКОМ СЛАБОГО НЕИСПОЛЬЗУЕМОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ.

Защита персонала от неиспользуемого рентгеновского излучения должна проводиться в соответствии с требованиями раздела 3 ГОСТ12.2.007.0–75, НРБ–76/87 и "Санитарными правилами работы с источниками неиспользуемого рентгеновского излучения", утвержденными заместителем главного государственного санитарного врача СССР 19.01.79 г. №1960–79. (Атомиздат, 1989 г.) и данного руководства.

При испытании электрической прочности изоляции главных цепей выключателя кратковременным напряжением промышленной частоты персонал должен находиться на расстоянии не менее 7 м от выключателя или испытания возможно проводить с защитным экраном, который должен устанавливаться на расстоянии не менее 0,5 м от токоведущих частей выключателя. Защитный экран должен быть выполнен шириной 700 мм и высотой 1000 мм из стального листа толщиной 2 мм или из другого материала с эквивалентным ослаблением рентгеновского излучения.

Если проверка электрической прочности изоляции главный цепей выключателя выполняется в шкафу КРУ защитным экраном являются передний щит выключателя и оболочка ячейки.

Мощность экспозиционной дозы на расстоянии 7 м от выключателя или на расстоянии 5 см от защитного экрана или оболочки ячейки КРУ не превышает 0,03 мкР/с и не представляет опасности для обслуживающего персонала.

- 1.1.6.6 Испытания электрической прочности изоляции главных цепей выключателя проводятся на аппарате АИД-70 или на любом другом оборудовании с аналогичными параметрами.
- 1.1.6.7 После проверки электрической прочности изоляции главных цепей выключателя кратковременным напряжением промышленной частоты необходимо снять остаточный заряд с выводов полюсов штангой ручной разрядной по ГОСТ 11.091.089–76.
- 1.1.6.8 Запрещается работа людей на участке схемы, отключенной лишь выключателем без дополнительного отключения разъединителем с видимым разрывом цепи.

- 1.1.6.9 Не допускается производить какие бы то ни было работы на выключателе при наличии напряжения в главной цепи.
- 1.1.6.10 Не допускается включать выключатель рычагом ручного включения при наличии напряжения в главной цепи.
- 1.1.6.11 Необходимо снимать рычаг ручного включения каждый раз после окончания операции включения.

1.1.7 Маркировка и пломбирование

- 1.1.7.1 На корпусе выключателя крепится табличка, содержащая следующие данные:
- товарный знак предприятия-изготовителя;
- наименование выключателя;
- условное обозначение исполнения, обозначение конструкторской документации выключателя по таблице Д.1;
 - обозначение климатического исполнения и категорию размещения по ГОСТ 15150;
 - номинальное напряжение в киловольтах;
 - номинальный ток в амперах;
 - номинальный ток отключения в килоамперах;
 - год изготовления выключателя.
 - массу выключателя;
 - обозначение ТУ;
 - заводской номер;
 - знака сертификации.

Маркировка встроенного привода приведена в той же табличке и содержит:

- род тока и напряжение привода;
- виды встроенных расцепителей и их количество (при наличии) и их параметры.
- 1.1.7.2 На табличках катушек электромагнитов и расцепителей привода указаны:
- децимальный номер катушки;
- марка провода;
- диаметр провода;
- количество витков;
- − электрическое сопротивление обмотки катушки, постоянному току при 20 °C.
- 1.1.7.3 Провода вспомогательных цепей имеют маркировочные обозначения.
- 1.1.7.4 На ящиках для упаковки выключателей нанесены следующие манипуляционные знаки и информационные надписи по ГОСТ 14192-96:
 - "Хрупкое. Осторожно";
 - "Беречь от влаги";
 - "Bepx";
 - "Штабелировать запрещается";
 - надпись "Брутто кг", "Нетто кг".

Кроме того на транспортную тару наносят:

- товарный знак завода-изготовителя;
- обозначение выключателя.
- 1.1.7.5 Счетчик числа циклов ВО опломбирован.
- 1.1.7.6 Ящики после упаковывания должны быть опломбированы.

1.1.8 Упаковка

1.1.8.1 Перед упаковкой выключатель следует установить во включенное положение. При наличии в выключателе расцепителя минимального напряжения зафиксировать якорь расцепителя вручную в подтянутом положении и установить две гайки позиции Л на шток расцепителя (рисунок В.1).

- 1.1.8.2 Открытые контактные поверхности полюсов выключателей (шины, контактные площадки основания) покрываются тонким слоем смазки ЦИАТИМ—221 по ГОСТ 9433—80.
- 1.1.8.3 Выключатели упаковываются во внутреннюю упаковку типа ВУ–IIБ и в транспортную упаковку типа ТФ–1 по ГОСТ 23216–78. Допускаются другие типы транспортной упаковки обеспечивающие сохранность выключателя при транспортировке и хранении.
- 1.1.8.4 Формуляр на выключатель и этикетки на КДВ кладываются в полиэтиленовый пакет и прикрепляются к каждому выключателю. Руководство по эксплуатации и схема электрическая принципиальная вкладываются в полиэтиленовый пакет и прикрепляются к одному из выключателей партии, поставляемой в один адрес.
- 1.1.8.5 Крепление выключателей, деталей, входящих в комплект выключателя, при упаковке выполняется так, чтобы исключить их смещение и механические повреждения во время транспортирования.
 - 1.2 Описание и работа составных частей выключателя

1.2.1 Блок дугогасительный

Блок дугогасительный состоит из камеры дугогасительной вакуумной (КДВ), гибкого токоподвода со стороны подвижного контакта КДВ с пружиной поджатия, выводов для внешнего присоединения подвижного и неподвижного контактов КДВ установленных в корпусе из самозатухающего поликарбоната, который защищает КДВ от воздействия внешней среды

Включение и отключение главной цепи производится посредством вала 17 привода, его соответствующим рычагом и тяговым изолятором подвижного контакта КДВ. Выводы подвижного и неподвижного контактов КДВ могут выполняться для шинного присоединения или для установки ламельных узлов.

1.2.2 Электромагнит включения

Электромагнит включения предназначен для включения выключателя и взвода отключающей пружины и пружин поджатия блоков дугогасительных.

Электромагнит состоит из неподвижного магнитопровода, якоря со штоком и возвратной пружины, образующих подвижный магнитопровод и катушки. На неподвижном магнитопроводе установлена крышка со стороны якоря для ограничения его обратного хода.

1.2.3 Блок защелок

Блок защелок предназначен для фиксации выключателя во включенном положении, а так же оперативного или аварийного отключения.

Блок защелок размещен внутри основания 2 и тягой 22 блок защелок соединен с валиком 20 механизма отключения.

1.2.4 Демпфер

Демпфер гидравлический служит для гашения излишней кинетической энергии механизма выключателя при его отключении.

Демпфер состоит из стакана, поршня, пружины, стержня, манжеты. В стакан демпфера залита тормозная жидкость типа «Роса» ТУ2451–004–10488057–94.

Установленный в выключателе демпфер с тормозной жидкостью «Poca» работает при всех условиях и режимах при температурах от минус 60° C до плюс 50° C. Использование других жидкостей в демпфере недопустимо.

При отключении выключателя ролик 28, установленный в рычаге 27 вала 17, воздействует на дно стакана демпфера и перемещает его вверх, при этом происходит гашение кинетической энергии подвижных масс выключателя.

При включении выключателя пружина демпфера давит на дно стакана, возвращая его в исходное положение.

1.2.5 Расцепители отключения

1.2.5.1 Для дистанционного оперативного и неоперативного отключения выключателя предназначен электромагнит отключения 13 (YAT1) (рисунок В.1).

Для отключения выключателя в аварийных режимах предназначены расцепители максимального тока, работающие по схеме с дешунтированием, расцепитель с питанием от независимого источника, расцепитель минимального напряжения.

1.2.5.2 Конструкции расцепителя максимального тока и расцепителя с питанием от независимого источника аналогичны конструкции электромагнита отключения.

Для выдачи сигнала во внешнюю цепь об аварийном отключении выключателя в расцепителях предусмотрены микровыключатели.

1.2.5.3 Расцепитель минимального напряжения с выдержкой времени срабатывания состоит из электромагнитной части и панели конденсаторов. На корпусе электромагнита установлена панель с микропереключателем, резисторами и диодами.

Катушка электромагнита состоит из двух обмоток:

- обмотки возврата I (выводы 1-2);
- обмотки удержания II (выводы 2-3).

Работа расцепителя минимального напряжения происходит следующим образом. Напряжение питания $U_{\text{ном}}=100~\text{B}$ частотой 50 Γ ц, поданное на расцепитель, выпрямляется диодным мостом расцепителя и через контакты микропереключателя подается на обмотку возврата. Якорь электромагнита втягивается и освобождает валик управления 20 (рисунок В.1), подготавливая тем самым выключатель к включению

При этом контакты SQ1.1 микропереключателя расцепителя к обмотке возврата I и подключат обмотку удержания II и последовательно соединенные с ней резисторы R1, R2 и диод VD5. Резистором R2 устанавливается необходимое напряжение срабатывания.

При снижении напряжения питания до напряжения срабатывания от 0.35 до 0.5 $U_{\text{ном}}$, якорь под действием пружины возврата возвращается в исходное положение и наконечником поворачивает валик управления 20 (рисунок B.1) и отключает выключатель.

При снятии напряжения питания срабатывание расцепителя происходит с выдержкой времени, заданной величиной емкости конденсатора С1 и общим сопротивлением резисторов R3 и R4. Резистором R4 устанавливается номинальное время заданной выдержки срабатывания.

Выключатель не включится пока напряжение не возрастет до значения напряжения возврата, не более $0.85~\rm U_{\rm hom.}$

1.2.6 Механизмы блокировок

Электрическая блокировка электромагнита включения 9 (YAC1) (рисунок В.1) состоит из микропереключателя 35 (SQ1), рычага 36 и болта 37. При включении выключателя вал 17 поворачивается и болтом 37 нажимает на рычаг 36, рычаг переключает микропереключатель 35 (SQ1), который разрывает цепь питания электромагнита включения 9 (YAC1). В исходное положение рычаг 36 возвращается пружиной.

Блокировка отключения выполнена аналогично блокировке включения. При включении выключателя вал 17 поворачивается и болтом 34 нажимает на рычаг 32, рычаг переключает микропереключатель 33 (SQ2), который замыкает цепь включения электромагнита оперативного отключения 13 (YAT1) и разрывает ее при отключении.

При установке выключателя в выкатные элементы КРУ используется блокировка от вкатывания или выкатывания выключателя из ячейки КРУ во включенном состоянии.

Блокировка состоит из рычага 24, имеющего планку Ж, толкателя 38 и микропереключателя 39 (SQ3). Рычаг 24 может быть соединен с педалью фиксатора выкатного элемента тягой или тросиком. Во включенном положении выключателя, планка Ж рычага 24 упирается в стержень 23 рычага 18 и препятствует повороту рычага 24 и поэтому фиксатор выкатного элемента невозможно будет вывести из паза ячейки КРУ и выкатить или вкатить выключатель из ячейки или в ячейку КРУ.

В отключенном положении выключателя рычаг 24 имеет возможность поворачиваться на оси и при нажатии на педаль фиксатора тяга или тросик поворачивают рычаг 24, который через толкатель 38 переключает микропереключатель 39 (SQ3) и блокирует включение электромагнита включения 9 (YAC1).

При установке выключателя в ячейки КСО блокировка выполнена с рычагом 24 у которого отсутствует планка Ж, а имеется планка И. В этом случае во включенном положении выключателя стержень 23 рычага 18 не препятствует повороту рычага 24. При повороте рычага 24 планка И поворачивает валик 20 механизма отключения и через тягу 22 освобождает защелку и выключатель отключается. Одновременно рычаг 24 другим плечом через толкатель 38 переключает микропереключатель 39 (SQ3) и блокирует включение электромагнита 9 (YAC1).

Поворот рычага 24 может осуществляться тросиком 42 или тягой. Возврат тросика 42 в исходное положение осуществляется пружиной 40. Натяжение оболочки тросика 42 осуществляется болтом 41.

1.2.7 Переключатель

Переключатель 10 (рисунок В.1) состоит из трех блок-контактов типа БВК-10 и предназначен для коммутации исполнительных цепей потребителя.

Номинальные напряжения и рабочие токи коммутирующих контактов при индуктивной нагрузке с коэффициентом мощности 0.7 ± 0.05 при включении или -0.35 ± 0.05 при отключении переменного тока, а так же при постоянном времени не более 0.05 с при отключении постоянного тока указаны в таблице 1.

TD ~	- 1
Таблица	- 1
т аолина	

Номинальное	Переменный ток	, коммутируемый	Постоянный ток, коммутируемы		
напряжение	контак	контактами, А,		ктами, А,	
на контактах, В	не б	более	не более		
	включаемый	отключаемый	включаемый	отключаемый	
110	_	_	10	4	
220	10	5	5	2	

2 Использование выключателя по назначению

2.1 Эксплуатационные ограничения

- 2.1.1 При эксплуатации основные параметры выключателя: наибольшее рабочее напряжение, номинальный ток и номинальный ток отключения не должны превышать значений, указанных в п.1.1.2 РЭ. Требования к внешним воздействующим факторам указанны в п.1.1.1.3.
- 2.1.2 Выключатели предназначены для работы на высоте не более 1000 м над уровнем моря.

2.2 Подготовка выключателя к использованию

2.2.1 Перед распаковкой выключателя необходимо убедиться в исправности упаковки, наличии пломб. После распаковки выключателя проверить внешним осмотром изоляторы, и

другие детали (узлы) выключателя на отсутствие трещин, сколов и других дефектов, убедиться, что выключатель находится во включенном положении, извлечь эксплутационную документацию. Проверить соответствие технических данных выключателя в формуляре надписям на табличке выключателя и комплектность выключателя.

- 2.2.2. Удалить консервационную смазку с открытых контактных поверхностей выводов главной цепи. Контакты выключателя имеют гальванические покрытия, поэтому зачистка их поверхностей абразивным инструментом недопустима. При очистке необходимо пользоваться растворителем, например, бензином авиационным Б–95/130 ГОСТ 1012–72 или уайтспиритом ГОСТ 3134–78.
- 2.2.3 Очистку выключателя, изоляторов, производить сухой мягкой ветошью или щеткой с чистой, сухой мягкой щетиной.
- 2.2.4. При наличии в выключателе расцепителя минимального напряжения снять крышку 4 с корпуса 5, Отвернуть две гайки позиция Л (рисунок В.1) на штоке якоря расцепителя минимального напряжения и удалить их. Выключатель должен отключиться.
- 2.2.5 При наличии в выключателе расцепителя минимального напряжения подать на него номинальное напряжение питания (100 В, 50 Γ ц). Включить выключатель вручную, при помощи рычага 3, отключить кнопкой 21 ВЫКЛ, при этом в окне основания 1 должны появляться, соответственно, надписи ВКЛ и ОТКЛ (рисунок Γ .1). Выключатель должен включаться и отключаться без отказов, что определяется визуально.
- 2.2.6 Проверить электрическое сопротивление главных цепей выключателя согласно п.3.2.2.
- 2.2.7 Проверить электрическую прочность изоляции главных цепей выключателя, а также электрическую прочность межэлектродного промежутка каждой вакуумной камеры по п.3.2.3.

Примечание — Перед проверкой электрической прочности изоляции выдержать выключатель в помещении, где проводится его проверка, до высыхания росы на нем, если перед этим он находился при низкой ($10\,^{\circ}$ С и ниже) температуре.

2.2.8 Произвести подключение клеммных колодок выключателя к исполнительным цепям ячейки КРУ, в соответствии со схемой электрической на выключатель.

Произвести установку выключателя в шкаф управления или вкатывание выключателя, установленного в выкатной элемент, в ячейку КРУ.

- 2.2.9 Проверить работу выключателя дистанционно в цикле ВО. Произвести пять шесть операций при номинальном напряжении питания привода. При наличии в выключателе расцепителя минимального напряжения подать на него номинальное напряжения.
- 2.2.10 После выполнения вышеперечисленных работ выключатель может быть включен на рабочее напряжение главных цепей.

2.3 Использование выключателя

- 2.3.1 Порядок работы обслуживающего персонала при использовании выключателей стационарного исполнения:
- освободить застопоренный якорь расцепителя минимального напряжения по п.2.2.4,
 при его наличии;
 - установить выключатель в ячейку КРУ или в шкаф управления;
 - подключить цепи управления приводом;
- заземлить корпус выключателя и подключить шины выключателя к главной цепи ячейки или шкафа управления;
- -- подать напряжение питания 100B, 50 Гц на расцепитель минимального напряжения (при его наличии);
 - подать напряжение главных цепей;
 - включить выключатель дистанционно с пульта управления;
 - отключение выключателя можно производить дистанционно или вручную кнопкой отключения.

2.4 Возможные неисправности и способы их устранения Возможные неисправности и способы их устранения приведены в таблице 2.

Таблица 2

Таолица 2		T
Неисправность	Вероятная причина	Способ устранения
1.Выключатель не	Отсутствует напряжение на	Проверить наличие
включился	контактах 1, 2, 3, 4, 5 колодки XT1 в момент подачи команды на включение	напряжения на контактах 1, 2, 3, 5 и подачу напряжения на контакт 4 колодки XT1 в момент подачи команды на включение
	Нормально замкнутые контакты vикропереключателя SQ3 находятся в разомкнутом состоянии Не сработал расцепитель минимального напряжения (при наличии)	Проверить механизм блокировки включения при вкатывании выкатного элемента в ячейку КРУ Проверить наличие напряжения (от 85 до 100 В) на контактах 21, 22 колодки XT1 Проверить исправность цепей, электроэлементов расцепителя
2. Выключатель не отключился (оперативное отключение)	Отсутствует напряжение на контактах 6, 7 колодки XT1 в момент подачи команды на отключение	Проверить наличие напряжения на контактах 6, 7 колодки XT1 в момент подачи команды на отключение
3.Выключатель не отключается при подаче аварийного сигнала на расцепители максимального тока, на расцепитель с питанием от независимого источника и расцепитель минимального напряжения (при их наличии)	Отсутствие аварийных сигналов на контактах XT1: — 12 и 13, 14 и 15, 16 и 17 для расцепителей максимального тока; — 19 и 20 для расцепителя с питанием от независимого источника; —21 и 22 для расцепителя минимального напряжения.	Проверить прохождение аварийных сигналов на контакты колодки XT1

- 3 Техническое обслуживание и измерение параметров
- 3.1 Техническое обслуживание
- В процессе эксплуатации выключателя необходимо проводить: осмотр, техническое обслуживание.
- 3.1.1 Порядок и периодичность технического обслуживания устанавливается в соответствии с технической и эксплуатационной документацией на электроустановки, в которых применяются выключатели.
 - 3.1.2 Объем работ и сроки их проведения указаны в таблице 3.

Таблица 3

таолица 3	
Меры, принимаемые при	Периодичность
техническом обслуживании	проверки
1 Осмотр:	После 5000 операций В и О
 произвести внешний осмотр выключателя; 	или в соответствии с п.
– убедиться в отсутствии трещин на изоляционных деталях и в	3.1.1.
отсутствии механических повреждений;	
- очистить от пыли и грязи изоляционные детали мягкой	
ветошью, смоченной в бензине или уайт-спирите;	
 произвести внешний осмотр контактных соединений 	
выключателей, установленных в выкатные элементы ячеек	
КРУ, при необходимости подтянуть крепеж токоведущих	
частей и контактных соединений;	
– возобновить смазку ЦИАТИМ 221 ГОСТ 9433–80 на	
доступных трущихся поверхностях;	
– измерить электрическое сопротивление главных цепей;	
– измерить сопротивление изоляции главных цепей	
После проведения указанных работ выключатель может	
эксплуатироваться до следующего осмотра.	
2 Техническое обслуживание	Один раз в двенадцать лет
заменить конденсатор С1, а также конденсаторы в схеме	
расцепителя минимального напряжения при его наличии	

3.1.3 При эксплуатации выключателя износ контактов КДВ проверяется визуально по метке (кольцевой риске) на подвижном контакте КДВ. Если во включенном положении выключателя положение метки совпадает с торцом направляющей втулки подвижного контакта, камеру заменяют новой.

Замену камеры рекомендуется производить полной заменой блока дугогасительного.

- 3.1.4 Для прогнозирования долговечности КДВ кроме износа контактов необходимо также учитывать количество выполненных операций О при коротком замыкании и величину токов отключения, руководствуясь таблицей Б.1, приведенной в справочном приложении Б.
 - 3.2 Измерение параметров
- 3.2.1 Для измерения параметров выключателя, необходимо иметь приборы, согласно приложению А.

Измерение параметров производят при соблюдении мер безопасности, указанных в разделе 1.

3.2.2. Сопротивление главной цепи между выводами каждого полюса выключателя измеряют методом амперметра и вольтметра на постоянном или выпрямленном токе, при включенном положении выключателя. Требования к измерительным приборам по ГОСТ 8024—90.

Выпрямленный ток, должен иметь коэффициент пульсации не более 0,06. При измерении значение тока устанавливается от 100 до 200 А.

Допускается производить замер сопротивления полюсов микроомметром, при помощи щупов с острыми иглами. При этом проводится не менее пяти измерений, из которых вычисляется среднее арифметическое значение сопротивления.

Перед замером сопротивления выключатель необходимо несколько раз включить и отключить без напряжения в главных цепях.

Предельное значение сопротивления главной цепи в процессе эксплуатации не должно превышать 50 мкОм. Если сопротивление окажется выше нормы, необходимо зачистить и подтянуть крепление всех контактных соединений.

3.2.3 Проверку электрической прочности изоляции главной цепи выключателя, в том числе прочности вакуумных промежутков между разведенными контактами КДВ производят на установке типа АИД-70 или на трансформаторе серии ИОМ–100, снабженных защитным

автоматом с током уставки (8–12) мА. Испытания проводят испытательным напряжением промышленной частоты. При испытании выключателя в ячейках КРУ или КРУН на заводе-изготовителе КРУ величина испытательного напряжения 42 кВ, при испытании выключателя в ячейках КРУ или КРУН на действующих объектах величина испытательного напряжения 38 кВ.

Вначале испытывается внешняя изоляция при включенном положении выключателя. Испытательное напряжение подается на средний полюс при заземленных крайних полюсах, а затем поочередно на крайние полюса при заземленном среднем полюсе и каждый раз выдерживается в течение пяти минут. При испытаниях не допускаются срабатывания защитного автомата и перекрытия внешней изоляции.

Затем испытывается внутренняя изоляция при отключенном положении выключателя поочередной подачей испытательного напряжения на нижние выводы полюсов при надежно заземленных и соединенных между собой верхних выводах полюсов. Испытательное напряжение плавно повышается до указанного значения и выдерживается в течение одной минуты. Если при плавном подъеме испытательного напряжения наблюдаются внутренние пробои КДВ, не приводящие к срабатыванию защиты, напряжение должно быть снижено до 10–12 кВ после чего вновь плавно повышается. Плавное повышение напряжения допускается до трех раз. Внутренние разряды, не приводящие к отключению автомата защиты, не являются признаком неудовлетворительной работы камеры.

Если в камере какого-либо полюса наблюдаются пробои при напряжении ниже испытательного и электрическая прочность не достигает требуемой величины, то камера бракуется, выключатель выводится из эксплуатации и вызывается представитель завода—изготовителя.

4 Хранение, транспортирование и утилизация

4.1 Хранение

Выключатель рекомендуется хранить в упакованном виде в закрытом помещении, защищающем его от атмосферных осадков и прямых солнечных лучей или вмонтированным в аппаратуру потребителя (КРУ).

Действие консервации рассчитано на срок хранения до двух лет.

4.2 Транспортирование

Выключатель должен транспортироваться во включенном положении.

Упакованные выключатели разрешается транспортировать любым видом транспорта при условии соблюдения правил транспортирования, установленных для данного вида транспорта.

Погрузо-разгрузочные работы следует выполнять, руководствуясь надписями и знаками, нанесенными на транспортную тару. Для защиты выключателя от атмосферных осадков при их транспортировке на поддоне на открытой платформе транспортного средства рекомендуется закрывать груз брезентом.

4.3 Утилизация

При утилизации выключателя специальных мер безопасности не требуется.

Приложение A (рекомендуемое)

Перечень приборов и материалов,

необходимых для технического обслуживания выключателя

Таблица А.1

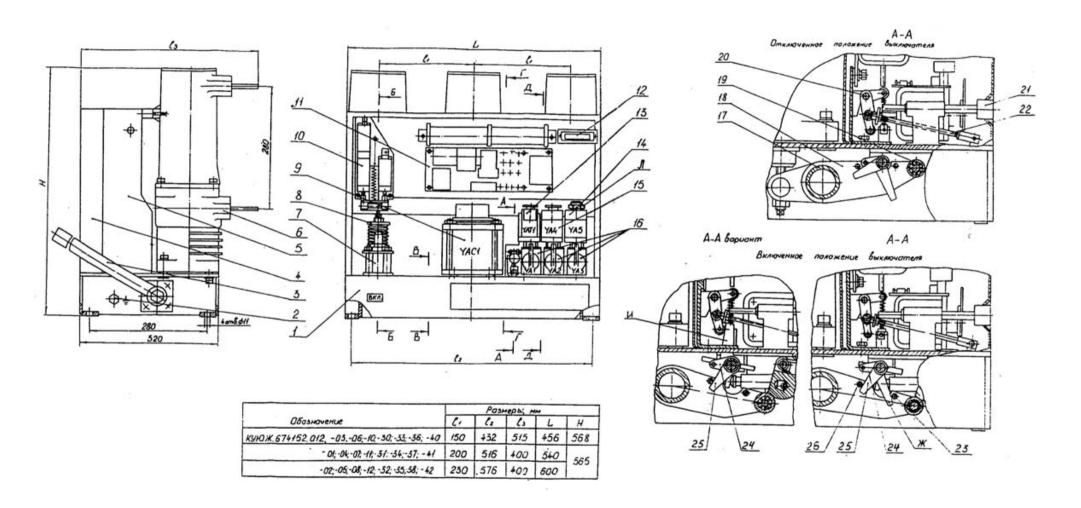
Наименование	Тип	Краткая техническая характеристика	Класс точности	Обозначение
Микроомметр	Ф-415	до 100 мкОм	4	ТУ25-04.2160-77
Шунт стационарный	75 ШСМ	150 A	0,5	ГОСТ8042–93
Амперметр	Э-514/3	5–10 A	0,5	ГОСТ8711–93
Милливольтметр	M 1200	0–75 мВ	0,5	ГОСТ8711–93
Трансформатор	OCM 1-0,1 y3-	0,1 κBA, 220/12 B		ТУ16-717137-83
Аппарат	220/5–12 АИД–70	(отвод 3 В) напряжение испытательное 50 кВ, 50 Гц	-	ТУ25-2030.0011-87

Примечание – Допускается применять приборы другого типа с классом точности не хуже указанных.

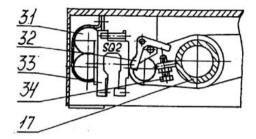
Таблица А.2

Наименование	Тип	Количество	Обозначение
Провод монтажный	НВМ 4x0,5-500 гибкий, сечением 0,5	25,0 м	ГОСТ 17515–72
Бензин	мм ² , изоляция 500В Б 95/130	0,5 л	ГОСТ 1012–72
Уайт-спирит Смазка	ЦИАТИМ–221	0,5 л 0,1 кг	ГОСТ 3134–78 ГОСТ 9433–80

Приложение Б Рекомендации по оценке коммутационного ресурса контактов камер при операциях О для различных значений токов кз


Таблица Б.1

Ток кз, кА	6,3	10,0	12,5	16,0	20,0
Число операций О	1500	600	500	300	150


Приведенные данные могут быть использованы для прогнозирования отказов и сроков замены камеры при частых случаях кз.

Для оценки реальной выработки контактов на штоке подвижного контакта камеры нанесена риска, по расстоянию от которой до фланца камеры можно судить о степени износа контактов. При видимом отсутствии зазора между риской и фланцем камеры дальнейшая эксплуатация камеры недопустима.

Приложение В Выключатель с электромагнитным приводом

В-В Выключенное положение выключателя

Г-Г Включенное положение выключателя

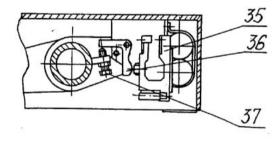
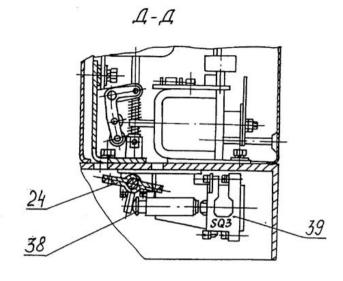
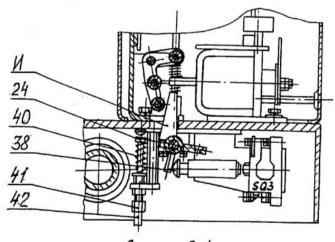




Рисунок В. 1

Д-Д вариант

PUCYHOK B. 1

Приложение Г Расположение органов управления и индикации на передней панели привода

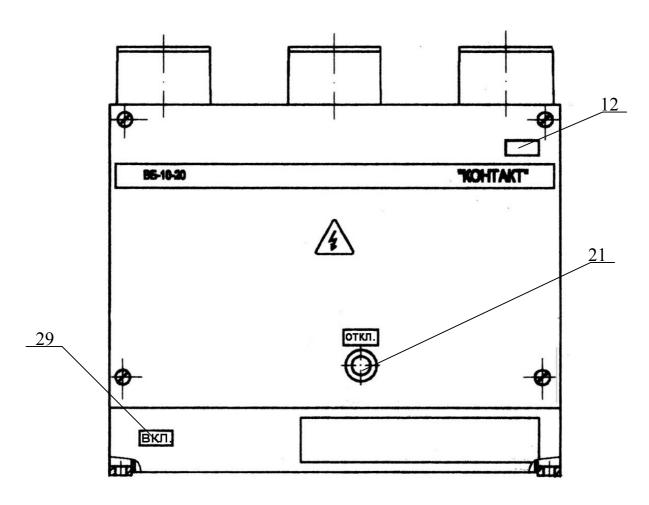
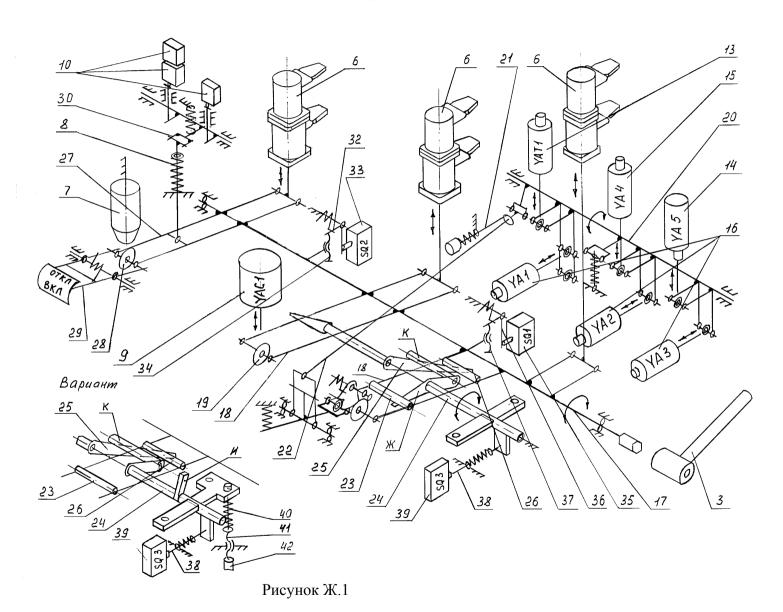


Рисунок Г.1

Приложение Д Типы исполнений выключателей

Таблица Д.1


0.5	Условное	Межпо-		Номинальное напряжение питания привода		Расцепители		
Обозначение конструкторской документации	обозначение типа исполнения	люсное расстояние, мм	напряжение питания Uном, В	напряжение управления Ином, В	макси- мального тока, шт.	минимального напряжения, шт.	с питанием от независимого источника, шт.	Обозначение схемы электрической принципиальной
КУЮЖ.674152.012-		150	~220	~220	2	_	1	КУЮЖ.674152.012 Э3
30								
-31		200	~220	~220	2	_	1	_ " _
-32		230	~220	~220	3	1	1	_ " _
-33		150	-220	-220	_	_	_	КУЮЖ.674152.012-03 ЭЗ
-34		200	-220	-220	_	_	_	_ " _
-35		230	-220	-220	_	_	_	_ " _
-36	ВБМ-10-20	150	-110	-110	_	_	_	КУЮЖ.674152.012-06 ЭЗ
-37		200	-110	-110	_	_	_	_ " _
-38		230	-110	-110	_	_	_	_ " _
-40		150	~220	-220	_	_	_	КУЮЖ.674152.012-10 ЭЗ
-41		200	~220	-220	_	_	_	_ " _
-42		230	~220	-220	_	_	_	_ " _

Примечания

¹ В выключателях КУЮЖ.674152.012–30;—31 допускается установка расцепителя минимального напряжения взамен расцепителя с питанием от независимого источника по карте заказа.

² В выключателях КУЮЖ.674152.012–33 – КУЮЖ.674152.012–42 допускается установка расцепителя с питанием от независимого источника по карте заказа.

Приложение Ж (справочное) Кинематическая схема выключателя

23

Приложение И (рекомендуемое) Технология замены конденсаторов

ВНИМАНИЕ! ВСЕ РАБОТЫ НА МЕХАНИЗМЕ ПРИВОДА ПРОВОДИТЬ ПРИ ОТКЛЮЧЕННОМ ПОЛОЖЕНИИ ВЫКЛЮЧАТЕЛЯ.

- 1. Для замены конденсатора С1 необходимо:
 - снять крышку 4 с корпуса 5 (рисунок В.1);
 - снять панель управления 11, предварительно отсоединив ее от жгута;
 - отпаять выводы конденсатора С1, ослабить винты удерживающей скобы и удалить старый конденсатор;
 - установить новый конденсатор С1 и закрепить его удерживающей скобой;
 - распаять выводы конденсатора, соблюдая полярность;
 - установить панель управления 11 на место;
 - установить крышку 4 на корпус 5.
- 2. Для замены конденсаторов расцепителя минимального напряжения необходимо:
 - положить выключатель на бок;
 - снять панель конденсаторов 31 (разрез В-В, рисунок В.1)
 - отпаять выводы конденсаторов, ослабить винты удерживающей скобы и удалить конденсаторы;
 - установить новые конденсаторы, распаять их выводы, соблюдая полярность;
 - закрепить конденсаторы удерживающей скобой и установить панель конденсаторов 31 на место;
 - вернуть выключатель в исходное положение.